Statistik

Statistiken werden in der Wirtschaft, in der Forschung und sogar in der Schule genutzt, um Daten darzustellen und auszuwerten.

Los geht’s Leg kostenfrei los
Statistik Statistik

Erstelle Lernmaterialien über Statistik mit unserer kostenlosen Lern-App!

  • Sofortiger Zugriff auf Millionen von Lernmaterialien
  • Karteikarten, Notizen, Übungsprüfungen und mehr
  • Alles, was du brauchst, um bei deinen Prüfungen zu glänzen
Kostenlos anmelden

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Wandle deine Dokumente mit AI in Karteikarten um

Inhaltsverzeichnis
Inhaltsangabe

    Der Notenspiegel, den Deine Lehrer nach einer Probe aufschreiben, ist ein einfaches Beispiel für eine Statistik aus der Mathematik.

    In dieser Erklärung geht es zunächst um die Grundlagen der Statistik, Formeln der Statistik und entsprechende Beispiele.

    Statistik – Grundlagen

    Da es sich bei der Statistik um ein großes Thema handelt, sind auch viele Begriffe und Formeln für das volle Verständnis nötig. In diesem Abschnitt findest Du deshalb zuerst eine Übersicht der wichtigsten Grundlagen.

    Statistik Definition

    Die Statistik kann folgendermaßen definiert werden.

    Bei der Statistik handelt es sich um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten.

    Dazu zählen auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.

    Die Statistik kann etwa die Zahl der Angestellten eines Unternehmens innerhalb eines gewissen Zeitraumes darstellen.

    Das Unternehmen A möchte einen Überblick darüber erhalten, wie sich Ihre Mitarbeiteranzahl seit der Gründung im Jahr 1990 entwickelt hat.

    Dafür suchen sie alle Ihre Aufzeichnungen aus den letzten Jahren über die Mitarbeiterzahl raus (Sammlung) und fassen die Zahlen in Fünferschritten zusammen. (Zusammenfassung). Diese Ergebnisse schreiben sie anschließend in eine Tabelle (Darstellung):

    Jahr1990199520002005201020152020
    Anzahl an Mitarbeitern\[10\]\[200\]\[2000\]\[5 000\]\[10 000\]\[30 000\]\[35 000\]

    Als sie betrachten, um wie viel Prozent die Anzahl pro Sprung wächst, kommen sie zu dem Schluss, dass Ihre Mitarbeiterzahl im Verhältnis zum Gründungsjahr weniger schnell wächst. (Analyse)

    Statistik lernen

    Ein paar statistische Begriffe sollten Dir bekannt sein:
    BegriffErklärungBeispiel
    GrundgesamtheitDie Grundgesamtheit umfasst alle Objekte, über die Informationen ermittelt werden sollen.Bei einem Notenspiegel einer Klausur ist die Grundgesamtheit alle die gesamte Klasse.
    StichprobeEine Stichprobe ist eine Teilmenge der Grundgesamtheit, die trotzdem die Eigenschaften der Grundgesamtheit widerspiegelt.Nur die Hälfte aller Schüler schreiben die Klausur, aber deren Notenspiegel wird auf die gesamte Klasse bezogen, die Hälfte der Schüler, die an der Klausur teilgenommen haben, sind eine Stichprobe für die ganze Klasse.
    MerkmalsträgerEin Merkmalsträger ist ein Objekt der Grundgesamtheit.In dieser Klasse ist ein Schüler ein Merkmalsträger.
    Merkmal/ VariablenMerkmale sind Eigenschaften, nach denen bei den Merkmalsträgern in der Statistik gefragt wird.Die Note eines Schülers ist in diesem Fall ein Merkmal.
    AusprägungEine mögliche Variante des Merkmals.Welche Note ein Schüler erreicht hat, ist eine Ausprägung.
    WertebereichMenge aller möglichem Ausprägungen.Wenn ein Schüler nach seiner Note gefragt wird, sind die Noten Eins bis sechs der Wertebereich.

    Statistik Formeln

    In der folgenden Tabelle findest Du eine kleine Sammlung von Formeln, die Dir in der Statistik immer wieder begegnen werden.


    WertFormelAnmerkung
    Mittelwert\[\mu=\frac{\text{Summe aller Werte}}{\text{Anzahl aller Werte}}\]
    Medianungerade Anzahl Messwerte\[x_{\text{med}}=x_{\frac{n+1}{2}}\]Kann nur bei ordinalen und kardinalen Skalenniveaus angewendet werden.\(n\) : Anzahl and Ausprägungen\(x_{med}\) : Median\(x\) : Ergebnis
    gerade Anzahl Messwerte\[x_{\text{med}}=\frac{1}{2} \cdot (x_{\frac{n}{2}}+x_{\frac{n}{2}+1})\]
    Varianz\[\sigma^2=\sum_{i=1}^n(x_i-\mu)^2\cdot p_i\]\(p_i\) : Wahrscheinlichkeit, dass \(x_i\) eintritt
    Standardabweichung\[\sigma=\sqrt{\text{Varianz}}=\sqrt{\sum_{i=1}^n(x_i-\mu)^2\cdot p_i} \]
    Spannweite\[R=x_{\text{max}}-x_{\text{min}}\]\(x_{\text{max}}\) : Größter Wert\(x_{\text{min}}\) : kleinster Wert
    Variationskoeffizient\[V=\frac{\sigma}{\mu}\]

    Statistik – Mathematik

    In der Mathematik wird die Statistik in zwei große Teilbereiche geteilt. Die deskriptive und die beurteilende Statistik.

    Deskriptive Statistik – einfach erklärt

    Die Deskriptive Statistik, auch beschreibende Statistik genannt, behandelt die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Das Ziel der deskriptiven Statistik ist es, einen Überblick über den vorliegenden Datensatz zu geben.

    Dabei werden die Daten geordnet und systematisch zusammengefasst. Zur Ordnung von Daten können Tabellen und Diagramme verwendet werden.

    Die Analyse von Daten geschieht häufig auf Basis von berechneten Lagemaßen oder Streuungsmaßen.

    Statistik Deskriptive Statistik StudySmarterAbbildung 1: Deskriptive Statistik

    Neben den vielen möglichen Methoden der deskriptiven Statistik gibt es zwei weitere Formen Datensätze zu beschreiben.

    Das Skalen- oder Messniveau einer Variablen klassifizieren ihren Aussagegehalt in etwa einer Studie. Unterschieden wird zwischen den drei Skalenniveaus Nominalskala, Ordinalskala und metrischer Skala.

    Alle drei Skalenniveaus haben verschiedene Eigenschaften, mithilfe welcher Du die Variablen in die verschiedenen Skalenniveaus einordnen kannst.

    Mehr zu den Messniveaus findest Du in der Erklärung Skalenniveau oder Deskriptive Statistik.

    Beurteilende Statistik – Zusammenfassung

    Die beurteilende Statistik, auch induktive Statistik genannt, stellt die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen, bereit.

    Für diese Methoden wird vor allem die Wahrscheinlichkeitsrechnung verwendet. Wenn die verwendete Stichprobe repräsentativ für die Grundgesamtheit ist, können von der Stichprobe Rückschlüsse auf die Grundgesamtheit gezogen werden.

    Statistik Beurteilende Statistik StudySmarterAbbildung 2: Beurteilende Statistik

    Dieser Schluss von der Stichprobe auf die Grundgesamtheit wird Repräsentationsschluss genannt.

    Das Ziel des Repräsentationsschlusses ist es, aus den erhobenen Daten einer Stichprobe auf die tatsächlichen Verhältnisse in der Grundgesamtheit zu schließen.

    Da der Schluss von der Stichprobe auf die Grundgesamtheit repräsentativ sein soll, wird er Repräsentationsschluss genannt.

    Ob dieser Repräsentationsschluss auch wirklich repräsentativ ist, lässt sich mit dem Hypothesentest überprüfen.

    Bei dem Hypothesentest werden die Schlussfolgerung aus der Stichprobe, Nullhypothese, und ihr Gegenereignis, die Alternativhypothese, untersucht. Die Frage, welcher der beiden Hypothesen am glaubwürdigsten ist, wird durch die Binomialverteilung beantwortet.

    Wie hoch die Wahrscheinlichkeit ist, dass Du Dich bei diesem Hypothesentest irrst, wird mit den Fehlerarten beschreiben.

    Der Fehler 1. Art wird begangen, wenn die Nullhypothese zwar in Wirklichkeit zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise verworfen wird.

    Der Fehler 2. Art wird begangen, wenn die Nullhypothese in Wirklichkeit nicht zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise beibehalten wird.

    Mehr zu diesem Thema findest Du in der Erklärung Inferenzstatistik.

    Deskriptive und Beurteilende Statistik – Beispiele

    Damit Du Dir den Unterschied zwischen der Beurteilenden und der Deskriptiven Statistik etwas besser vorstellen kannst, sind hier zwei Beispiele dargestellt.

    Beispiel für die Deskriptive Statistik

    Eine Englischlehrerin ist mit dem Wortschatz ihrer Klasse unzufrieden, also entscheidet sie, jede Woche aus der 30-köpfigen Klasse zehn zufällig ausgewählte Schüler einen Vokabeltest machen zu lassen.

    Das Ergebnis der ersten Woche lautet:

    SchülerSchüler 1Schüler 2Schüler 3Schüler 4Schüler 5Schüler 6Schüler 7Schüler 8Schüler 9Schüler 10
    Note\[3\]\[1\]\[4\]\[3\]\[2\]\[6\]\[4\]\[5\]43

    Damit die Schüler Ihre aktuelle Leistung veranschaulicht bekommen, entwirft die Lehrerin einen Notenspiegel. Dafür zählt sie zusammen, wie oft welche Note erreicht wird.

    Raus kommt folgender Notenspiegel:

    Note123456
    Anzahl\[1\]\[1\]\[3\]\[3\]\[1\]\[1\]

    Um jetzt noch den Durchschnitt auszurechnen, addiert sie alle erreichten Noten und teilt diese Summe durch die Anzahl der teilnehmenden Schüler. Raus kommt der Durchschnitt \(3,4\). Das ist zwar lediglich befriedigend, doch die Lehrerin hatte bisher den Eindruck, dass es viel schlimmer um die Vokabelkenntnisse ihrer Schüler steht.

    Mit diesem Notenspiegel hat die Englischlehrerin deskriptive Statistik durchgeführt. Mithilfe von Tabellen und Rechnungen hat sie die Daten aus der Stichprobe ausgewertet und interpretiert.

    Dieses Beispiel kann dann wie folgt weitergeführt werden:

    Beispiel für beurteilende Statistik

    Jetzt hat die Englischlehrerin einen Durchschnitt ermittelt, dieser ist allerdings nur von zehn der insgesamt 30 Schüler. Da dieser Durchschnitt aber nicht so schlecht ausgefallen war, wie sie dachte, beschließt die Lehrerin erst mal keine weiteren Maßnahmen zur Verbesserung der Vokabelkenntnisse durchzuführen. Ihre Hypothese ist es, dass die Annahme, dass der Notenspiegel nicht repräsentativ ist, falsch ist.

    Jetzt vergeht eine weitere Woche, in der die Lehrerin beschlossen hat, keine weiteren Vokabeltests durchzuführen. Doch wie vorher, hat die Lehrerin das Gefühl, dass die Schüler ihre Vokabeln nicht beherrschen. Also beschließt sie, einen weiteren Vokabeltest mit allen 30 Schülern durchzuführen. Diesmal sieht der Notenspiegel aber so aus:

    Note123456
    Anzahl\[1\]\[2\]\[6\]\[9\]\[7\]\[5\]

    Der Durchschnitt liegt bei \(4,1\), also viel schlechter als zuvor.

    Die Lehrerin hat nach dem ersten Vokabeltest einen Fehler 1. Art begangen. Das heißt, dass die Annahme, dass der erste Notenspiegel nicht repräsentativ ist, fälschlich abgetan worden war, obwohl sie richtig ist.

    Dieser Repräsentationsschluss und der Fehler 1. Art sind Teile dessen, worum es sich in der beurteilenden Statistik handelt.

    Statistik – Das Wichtigste

    • Bei der Statistik handelt es sich um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Dazu auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.
    • Wichtige Begriffe der Statistik, die Du Dir merken solltest, sind die Grundgesamtheit, Stichprobe, Merkmalsträger, Merkmal, Ausprägung und Wertebereich
    • Die Deskriptive Statistik, auch beschreibende Statistik genannt, behandelt die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Das Ziel der deskriptiven Statistik ist es, einen Überblick über den vorliegenden Datensatz zu geben.
    • Das Skalen- oder Messniveau einer Variablen klassifizieren ihren Aussagegehalt in etwa einer Studie. Unterschieden wird zwischen den drei Skalenniveaus Nominalskala, Ordinalskala und metrischer Skala.
    • Die beurteilende Statistik, auch induktive Statistik genannt, stellt die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen, bereit.
    • Wenn die verwendete Stichprobe repräsentativ für die Grundgesamtheit darstellt, kann die können von der Stichprobe Rückschlüsse auf die Grundgesamtheit gezogen werden.
    • Bei dem Hypothesentest werden die Schlussfolgerung aus der Stichprobe, Nullhypothese, und ihr Gegenereignis, die Alternativhypothese, untersucht. Die Frage, welcher der beiden Hypothesen am glaubwürdigsten ist, wird durch die Binomialverteilung beantwortet.
    • Der Fehler 1. Art wird begangen, wenn die Nullhypothese zwar in Wirklichkeit zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise verworfen wird.
    • Der Fehler 2. Art wird begangen, wenn die Nullhypothese in Wirklichkeit nicht zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise beibehalten wird.
    Häufig gestellte Fragen zum Thema Statistik

    Welche Art von Statistiken gibt es?

    Es gibt die beurteilende und die beschreibende Statistik. 


    Die beschreibende oder deskriptive Statistik versucht, Daten darzustellen und zu ordnen. Dafür werden beispielsweise Tabellen, aber auch bestimmte Lagemaße und Streuungsmaße verwendet. 


    Die beurteilende Statistik versucht, durch die Daten aus der beschreibenden Statistik allgemeine Regeln für die Grundgesamtheit zu ziehen.

    Was ist Statistik einfach erklärt?

    Bei der Statistik handelt es sich einfach erklärt um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Dazu zählen auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.

    Was lernt man bei Statistik?

    Bei Statistik lernst Du, wie Du Daten sammelst, zusammenfasst, analysierst und darstellst. Außerdem lernst Du die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen. 

    Wie berechnet man eine Statistik?

    Eine Statistik kannst Du nicht direkt berechnen, Du kannst aber Kennzahlen, wie die Lagemaße, Streuungsmaße und Zusammenhangsmaße berechnen.

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welches Skalenniveau hat die Variable "IQ-Wert"?

    Welches Skalenniveau hat die Variable "Bildungsgrad"?

    Welches Skalenniveau hat die Variable "Geschlecht"?

    Weiter

    Entdecken Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 9 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren

    Alle Inhalte freischalten mit einem kostenlosen StudySmarter-Account.

    • Sofortiger Zugriff auf Millionen von Lernmaterialien.
    • Karteikarten, Notizen, Übungsprüfungen, AI-tools und mehr.
    • Alles, was du brauchst, um bei deinen Prüfungen zu bestehen.
    Second Popup Banner