Das Erbgut aller Organismen ist mit dem genetischen Code verschlüsselt und die Entschlüsselung führt zur Herstellung der Proteine.
Die bekannte Abkürzung DNA kommt aus dem Englischen und steht für deoxyribonucleic acid und wird oft synonym für die deutsche Abkürzung DNS, Desoxyribonukleinsäure, verwendet. Sie stellt das Erbgut dar.
Definition und Aufbau des genetischen Codes
Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Basen (Nukleotiden) in der DNA. Dabei gibt es die Basen Thymin (T), Adenin (A), Guanin (G) und Cytosin (C).
Die komplementäre Base von Guanin ist Cytosin. Die komplementäre Base von Adenin ist Thymin. Dabei kommt Thymin nur auf der DNA vor. Die mRNA beinhaltet nicht Thymin, sondern eine ähnliche Base, das Uracil (U).
Die mRNA ist eine Abschrift der DNA. Sie wird während der Transkription gebildet, indem eine RNA-Polymerase den codogenen DNA-Strang abliest und eine komplementäre mRNA bildet. Die mRNA ist im Gegensatz zur DNA eine einsträngige Nukleinsäure und kann aus dem Zellkern zu den Ribosomen transportiert werden. Dort wird sie Codon für Codon in eine Aminosäuresequenz übertragen. Diesen Prozess nennt man Translation.
Eine Übersicht zum Ablauf der Proteinbiosynthese findest Du hier:
Genetischer Code – Basentriplett
Wie ist ein Codon aufgebaut und was für Codons gibt es?
Ein Codon besteht aus drei Nukleotiden, sogenannten Tripletts. Dabei werden diese meist, aber nicht immer, in Aminosäuren übersetzt. Dieser Triplett Code wird auch als Triplett-Raster-Code bezeichnet.
Codons für Aminosäuren
Eine Aminosäure wird durch eine Basensequenz mit drei Basen bestimmt. Dieses Basentriplett bezeichnet man als Codon. Es gibt 64 mögliche Kombinationsmöglichkeiten von Basentripletts, aber nur 20 verschiedene Aminosäuren. Diese werden von 61 Codons abgedeckt. Die meisten Aminosäuren können also von unterschiedlichen Codons erzeugt werden.
Start- und Stoppcodons
Ein Codon, das normalerweise für eine Aminosäure codiert, dient auch gleichzeitig als Startcodon. Dabei handelt es sich um das Triplett AUG, das zusätzlich für die Codierung der Aminosäure Methionin zuständig ist. Das Startcodon wird benötigt, um mit dem Ablesen der mRNA beginnen zu können.
Die anderen drei Basentripletts werden als Stoppcodons bezeichnet – sie stellen den Punkt dar, an dem die Translation abgebrochen wird. Danach wird die fertige Aminosäurekette an den Ribosomen freigegeben.
Du kannst Dir die DNA wie ein Buch vorstellen. Die Basen sind Buchstaben, die Codons Wörter und die Gensequenzen Sätze. Zusammen bilden sie einen gesamten Roman.
Die Funktion des genetischen Codes
Der genetische Code trägt dazu bei, dass im Körper die Aminosäure-Produktion und damit auch die Eiweißproduktion ablaufen kann. Dieser Prozess wird auch Proteinbiosynthese genannt. Dabei ist die Reihenfolge der Aminosäuren in Genen auf der DNA gespeichert.
Die DNA liegt gut geschützt im Zellkern einer jeden Körperzelle vor. Von dort aus kann das Erbgut abgelesen und mithilfe des genetischen Codes in Proteine übersetzt werden.
Die Proteine sind an wichtigen Prozessen, z. B. am Aufbau von Körperbestandteilen wie Haaren, Muskelfasern, Blutkörperchen oder Sehnen beteiligt. Außerdem katalysieren sie viele biochemische Reaktionen. Das heißt, sie beschleunigen Reaktionen, ohne dabei selbst verbraucht zu werden, indem sie die Aktivierungsenergie einer Reaktion herabsetzen.
Dabei gibt der genetische Code vor, nach welchem Schema die Basensequenz der DNA in Aminosäuren übersetzt wird. Durch ihn wird sowohl der Phänotyp von Lebewesen, als auch der Zellstoffwechsel kontrolliert, der von Proteinen gesteuert wird.
Entschlüsselung des genetischen Codes
Der genetische Code ist die Entschlüsselung der Erbinformationen, also der DNA. Bei der ersten Phase der Proteinbiosynthese, der Transkription, wird zunächst eine Kopie von einem Teil der DNA angefertigt. Diese Kopie nennt sich Messenger-RNA (mRNA). Mit ihrer Hilfe wird dann die DNA während der Translation, Codon für Codon an den Ribosomen abgelesen und durch den genetischen Code entschlüsselt.
Um die Codons an den Ribosomen zu übersetzen, lagern sich komplementäre Tripletts an die DNS. Diese setzen ihre spezifische Aminosäure ab. Aus der Aneinanderreihung der Aminosäuren wird eine Aminosäurekette gebildet, die auch als Primärstruktur der Proteine bekannt ist.
Die spezifische Aminosäuresequenz bildet im Komplex das benötigte Protein. Den Ablauf von der DNA bis zur Proteinentstehung wird als Proteinbiosynthese bezeichnet. Diese ist in Abbildung 1 dargestellt.
Die Code-Sonne
Die Code-Sonne hilft Dir, bei einem Codon die dazugehörige Aminosäure abzulesen. Die Vorlage, auf der Du die Code-Sonne anwendest, ist die mRNA. Eine Transkription der DNA hat also vorher schon stattgefunden.
Die Code-Sonne wird von innen nach außen gelesen. Dabei fängst Du mit der ersten Base (das heißt: vom 5' Ende zum 3' Ende) Deines Codons an und arbeitest Dich nach außen vor. Dadurch findest Du heraus, welche Aminosäure hinter einem Basentriplett steckt.
Das 3‘ Ende ist das Ende der mRNA, welches eine Carboxylgruppe trägt. Diese besteht aus einem Kohlenstoffatom, welches eine Doppelbindung zu einem Sauerstoffmolekül eingeht und mit dem Rest des mRNA Strangs verbunden ist. Zudem ist am Kohlenstoffatom eine OH-Gruppe gebunden.
Das 5‘ Ende besitzt eine Aminogruppe an ihrem Ende. Diese besteht aus einem Stickstoffatom, an welchem zwei Wasserstoffe gebunden sind.
Eigenschaften des genetischen Codes
Der genetische Code wird entschlüsselt und abgelesen. Um diese Vorgänge zu ermöglichen, benötigt es spezielle Eigenschaften.
1. Genetischer Code universell
Nahezu überall ist der genetische Code gleichbleibend: Codons von Bakterien bis zu Menschen codieren für die gleichen Aminosäuren. Es gibt nur wenige Ausnahmen, in denen das nicht so ist, z. B. bei Mitochondrien. Daher wird der genetische Code als universell bezeichnet.
Diese Eigenschaft ist besonders für die Gentechnik sehr nützlich. Dort kann etwa ein Ausschnitt menschlicher DNA, der für ein Enzym codiert, in ein Bakterium geschleust werden. Dieser DNA Ausschnitt wird im Bakterium abgelesen. Dadurch werden auch im Bakterium menschliche Enzyme hergestellt.
2. Redundanter / degenerierter genetischer Code
Im Allgemeinen kannst Du Dir immer merken: Ein Basentriplett steht immer nur für eine Aminosäure, aber eine Aminosäure steht nicht nur für ein Basentriplett.
Das liegt daran, weil es 64 verschiedene Kombinationsmöglichkeiten für Codons gibt, aber nur 20 Aminosäuren. Es ist unvermeidbar, dass verschiedene Codons die gleiche Aminosäure bilden. Daher wird der genetische Code als redundant oder degeneriert bezeichnet.
Das bedeutet, dass beispielsweise die Aminosäure Valin (Val) sowohl aus dem Triplet GUG, als auch aus dem Triplet GUU gebildet werden kann. Diese sind mehrere Basenabfolgen, die trotzdem alle Valin als übersetzte Aminosäure besitzen.
3. Der genetische Code ist eindeutig
Ein Triplett aus Basen codiert immer für die gleiche Aminosäure. Es ist also eindeutig, dass eine bestimmte Basenabfolge aus drei Basen, immer die gleiche Aminosäure als Ergebnis hat.
4. Der genetische Code ist komma- und überlappungsfrei
Ein Triplett steht immer für sich. Die Tripletts werden Codon für Codon abgelesen, ohne sich zu überschneiden. Erst nachdem ein Codon fertig abgelesen wurde, kommt das Nächste an die Reihe. Es gibt also keine Überlappungen und es wird auch mitten im Ablesevorgang kein Codon ausgelassen.
Die Fehlertoleranz des genetischen Codes
Dass mehrere Codons die gleiche Aminosäure codieren, ist sehr vorteilhaft. So kann es nämlich vorkommen, dass Mutationen keine Wirkung aufweisen (auch stumme Mutation genannt).
Allgemein ist eine Mutation eine Veränderung des Erbguts, also der DNA. Dabei kann eine Mutation zu einer Erkrankung oder Beeinträchtigung führen, sie muss es aber nicht. Es gibt auch eine Vielzahl an Mutationen der DNA, die gänzlich unbemerkt bleiben. Dabei kommt es meist darauf an, wie stark die Veränderung der DNA ist.
Dies ist aber nicht allein ausschlaggebend. So hat beispielsweise eine Mutation an einer Base, die dadurch zum Stopp-Codon wird, einen Stopp der Translation zur Folge. Dadurch kann kein funktionsfähiges Protein entstehen. So eine Mutation nennt sich Nonsense Mutation.
Unauffällige Mutationen, bei denen trotz Veränderung die gleiche Aminosäure herauskommt, heißen stumme Mutationen. Durch sie hat der genetische Code eine relativ hohe Fehlertoleranz. Das bedeutet, dass durch eine solche Mutation nicht sofort das Protein verändert oder funktionsuntüchtig wird.
Ein Codon, welches für die Aminosäure Isoleucin steht, ist AUU. Es kommt zu einer Mutation der DNA und die dritte Base Uracil wird durch Adenin ausgetauscht. Diese Veränderung der DNA macht keinen Unterschied, da auch die Kombination AUA für Isoleucin codiert. Somit liegt hier eine stumme Mutation vor.
Häufig müssen nur zwei Basen eines Tripletts unverändert bleiben, damit sich die richtige Aminosäure ergibt.
Das kannst Du auch an der Code-Sonne erkennen, an der teilweise alle vier letzten Basen für die gleiche Aminosäure codieren (siehe Valin).
Denn selbst wenn die veränderte Base einmal nicht zur gleichen Aminosäure führt, so kommt meistens doch eine Aminosäure mit ähnlichen Eigenschaften heraus. Das lässt sich daraus ableiten, dass Basen an bestimmten Plätzen spezifische Eigenschaften der Aminosäure hervorrufen.
Die Tripletts mit der Base Uracil in der Mitte (U) sind meist hydrophob. Tripletts mit der Base Adenin in der Mitte (A) sind hydrophil. Daraus lässt sich schließen, dass die Veränderung der ersten Base meistens am schwerwiegendsten ist. Die erste Base gibt nämlich die Art der Ladung der Aminosäure an. Wird die Ladung umgekehrt, so hat dies schwerwiegendere Folgen für die Funktion des Proteins.
Der genetische Code – Das Wichtigste
- Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Basen in der DNA.
- Er wird während der Proteinbiosynthese abgelesen, und liefert die Bauanleitung für Proteine aus Aminosäuren.
- Ein Codon ist eine Kombination aus drei Basen. Es codiert genau für eine Aminosäure.
- Mithilfe der Code-Sonne kann man den genetischen Code entschlüsseln.
- Der genetische Code ist universell, redundant, bzw. degeneriert, eindeutig und überlappungsfrei.
- Die Fehlertoleranz des genetischen Codes ist hoch.
Lerne mit 28 Genetischer Code Karteikarten in der kostenlosen StudySmarter App
Wir haben 14,000 Karteikarten über dynamische Landschaften.
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Genetischer Code
Was ist der genetische Code einfach erklärt?
Der genetische Code ist sozusagen die Anleitung zum Bau von Proteinen. Er besteht aus Basentripletts in unserer DNA. Basentripletts werden bei der Transkription abgelesen und in eine mRNA überschrieben. RNA kann im Gegensatz zur DNA aus dem Zellkern zu den Ribosomen transportiert werden. An den Ribosomen wird über die aufeinander folgenden Basentriplets eine Aminosäuresequenz synthetisiert. Die Aminosäuresequenz kann im Anschluss zu einem Protein gefaltet werden.
Was bedeutet "der genetische Code ist redundant"?
Redundant bedeutet, dass mehrere verschiedene Codons die gleiche Aminosäure bilden können, da es mehr Kombinationsmöglichkeiten (64) als Aminosäuren (20) gibt. Daher: Ein Basentriplett steht immer nur für eine Aminosäure. Aber eine Aminosäure steht nicht nur für ein Basentriplett!
Was sind die Eigenschaften des genetischen Codes?
Der genetische Code ist universell und redundant bzw. degeneriert. Universell bedeutet, dass der genetische Code in allen Lebewesen den gleichen Regeln folgt. Ein Codon codiert von Bakterie bis zu Mensch stets die gleiche Aminosäure. Redundant bzw. degeneriert bedeutet, dass es mehrere Kombinationsmöglichkeiten von Basentripletts für die gleiche Aminosäure gibt.
Wie ist der genetische Code aufgebaut?
Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Nukleotiden in der DNA. Er wird bei der Proteinbiosynthese abgelesen und liefert den Bauplan für die Zusammensetzung (Reihenfolge) von Aminosäuren zu einem Protein.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr